Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cell wall O-acetyl and methyl esterification patterns of leaves reflected in atmospheric emission signatures of acetic acid and methanol.

Identifieur interne : 000526 ( Main/Exploration ); précédent : 000525; suivant : 000527

Cell wall O-acetyl and methyl esterification patterns of leaves reflected in atmospheric emission signatures of acetic acid and methanol.

Auteurs : Rebecca A. Dewhirst [États-Unis] ; Cassandra A. Afseth [États-Unis] ; Cristina Castanha [États-Unis] ; Jenny C. Mortimer [États-Unis] ; Kolby J. Jardine [États-Unis]

Source :

RBID : pubmed:32433654

Descripteurs français

English descriptors

Abstract

Plants emit high rates of methanol (meOH), generally assumed to derive from pectin demethylation, and this increases during abiotic stress. In contrast, less is known about the emission and source of acetic acid (AA). In this study, Populus trichocarpa (California poplar) leaves in different developmental stages were desiccated and quantified for total meOH and AA emissions together with bulk cell wall acetylation and methylation content. While young leaves showed high emissions of meOH (140 μmol m-2) and AA (42 μmol m-2), emissions were reduced in mature (meOH: 69%, AA: 60%) and old (meOH: 83%, AA: 76%) leaves. In contrast, the ratio of AA/meOH emissions increased with leaf development (young: 35%, mature: 43%, old: 82%), mimicking the pattern of O-acetyl/methyl ester ratios of leaf bulk cell walls (young: 35%, mature: 38%, old: 51%), which is driven by an increase in O-acetyl and decrease in methyl ester content with age. The results are consistent with meOH and AA emission sources from cell wall de-esterification, with young expanding tissues producing highly methylated pectin that is progressively demethyl-esterified. We highlight the quantification of AA/meOH emission ratios as a potential tool for rapid phenotype screening of structural carbohydrate esterification patterns.

DOI: 10.1371/journal.pone.0227591
PubMed: 32433654
PubMed Central: PMC7239448


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cell wall O-acetyl and methyl esterification patterns of leaves reflected in atmospheric emission signatures of acetic acid and methanol.</title>
<author>
<name sortKey="Dewhirst, Rebecca A" sort="Dewhirst, Rebecca A" uniqKey="Dewhirst R" first="Rebecca A" last="Dewhirst">Rebecca A. Dewhirst</name>
<affiliation wicri:level="2">
<nlm:affiliation>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Afseth, Cassandra A" sort="Afseth, Cassandra A" uniqKey="Afseth C" first="Cassandra A" last="Afseth">Cassandra A. Afseth</name>
<affiliation wicri:level="2">
<nlm:affiliation>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Castanha, Cristina" sort="Castanha, Cristina" uniqKey="Castanha C" first="Cristina" last="Castanha">Cristina Castanha</name>
<affiliation wicri:level="2">
<nlm:affiliation>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mortimer, Jenny C" sort="Mortimer, Jenny C" uniqKey="Mortimer J" first="Jenny C" last="Mortimer">Jenny C. Mortimer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Joint BioEnergy Institute, Emeryville, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Joint BioEnergy Institute, Emeryville, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Environmental Genomics and Systems Biology, Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Genomics and Systems Biology, Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jardine, Kolby J" sort="Jardine, Kolby J" uniqKey="Jardine K" first="Kolby J" last="Jardine">Kolby J. Jardine</name>
<affiliation wicri:level="2">
<nlm:affiliation>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32433654</idno>
<idno type="pmid">32433654</idno>
<idno type="doi">10.1371/journal.pone.0227591</idno>
<idno type="pmc">PMC7239448</idno>
<idno type="wicri:Area/Main/Corpus">000296</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000296</idno>
<idno type="wicri:Area/Main/Curation">000296</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000296</idno>
<idno type="wicri:Area/Main/Exploration">000296</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cell wall O-acetyl and methyl esterification patterns of leaves reflected in atmospheric emission signatures of acetic acid and methanol.</title>
<author>
<name sortKey="Dewhirst, Rebecca A" sort="Dewhirst, Rebecca A" uniqKey="Dewhirst R" first="Rebecca A" last="Dewhirst">Rebecca A. Dewhirst</name>
<affiliation wicri:level="2">
<nlm:affiliation>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Afseth, Cassandra A" sort="Afseth, Cassandra A" uniqKey="Afseth C" first="Cassandra A" last="Afseth">Cassandra A. Afseth</name>
<affiliation wicri:level="2">
<nlm:affiliation>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Castanha, Cristina" sort="Castanha, Cristina" uniqKey="Castanha C" first="Cristina" last="Castanha">Cristina Castanha</name>
<affiliation wicri:level="2">
<nlm:affiliation>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mortimer, Jenny C" sort="Mortimer, Jenny C" uniqKey="Mortimer J" first="Jenny C" last="Mortimer">Jenny C. Mortimer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Joint BioEnergy Institute, Emeryville, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Joint BioEnergy Institute, Emeryville, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Environmental Genomics and Systems Biology, Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Genomics and Systems Biology, Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jardine, Kolby J" sort="Jardine, Kolby J" uniqKey="Jardine K" first="Kolby J" last="Jardine">Kolby J. Jardine</name>
<affiliation wicri:level="2">
<nlm:affiliation>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetic Acid (metabolism)</term>
<term>Acetylation (MeSH)</term>
<term>Atmosphere (MeSH)</term>
<term>Carboxylic Ester Hydrolases (metabolism)</term>
<term>Cell Wall (metabolism)</term>
<term>Esterification (MeSH)</term>
<term>Methanol (metabolism)</term>
<term>Methylation (MeSH)</term>
<term>Pectins (metabolism)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Populus (drug effects)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Stress, Physiological (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide acétique (métabolisme)</term>
<term>Acétylation (MeSH)</term>
<term>Atmosphère (MeSH)</term>
<term>Carboxylic ester hydrolases (métabolisme)</term>
<term>Estérification (MeSH)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Méthanol (métabolisme)</term>
<term>Méthylation (MeSH)</term>
<term>Paroi cellulaire (métabolisme)</term>
<term>Pectine (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Stress physiologique (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acetic Acid</term>
<term>Carboxylic Ester Hydrolases</term>
<term>Methanol</term>
<term>Pectins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines végétales</term>
<term>Stress physiologique</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Wall</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide acétique</term>
<term>Carboxylic ester hydrolases</term>
<term>Feuilles de plante</term>
<term>Méthanol</term>
<term>Paroi cellulaire</term>
<term>Pectine</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acetylation</term>
<term>Atmosphere</term>
<term>Esterification</term>
<term>Methylation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acétylation</term>
<term>Atmosphère</term>
<term>Estérification</term>
<term>Méthylation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants emit high rates of methanol (meOH), generally assumed to derive from pectin demethylation, and this increases during abiotic stress. In contrast, less is known about the emission and source of acetic acid (AA). In this study, Populus trichocarpa (California poplar) leaves in different developmental stages were desiccated and quantified for total meOH and AA emissions together with bulk cell wall acetylation and methylation content. While young leaves showed high emissions of meOH (140 μmol m-2) and AA (42 μmol m-2), emissions were reduced in mature (meOH: 69%, AA: 60%) and old (meOH: 83%, AA: 76%) leaves. In contrast, the ratio of AA/meOH emissions increased with leaf development (young: 35%, mature: 43%, old: 82%), mimicking the pattern of O-acetyl/methyl ester ratios of leaf bulk cell walls (young: 35%, mature: 38%, old: 51%), which is driven by an increase in O-acetyl and decrease in methyl ester content with age. The results are consistent with meOH and AA emission sources from cell wall de-esterification, with young expanding tissues producing highly methylated pectin that is progressively demethyl-esterified. We highlight the quantification of AA/meOH emission ratios as a potential tool for rapid phenotype screening of structural carbohydrate esterification patterns.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32433654</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Cell wall O-acetyl and methyl esterification patterns of leaves reflected in atmospheric emission signatures of acetic acid and methanol.</ArticleTitle>
<Pagination>
<MedlinePgn>e0227591</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0227591</ELocationID>
<Abstract>
<AbstractText>Plants emit high rates of methanol (meOH), generally assumed to derive from pectin demethylation, and this increases during abiotic stress. In contrast, less is known about the emission and source of acetic acid (AA). In this study, Populus trichocarpa (California poplar) leaves in different developmental stages were desiccated and quantified for total meOH and AA emissions together with bulk cell wall acetylation and methylation content. While young leaves showed high emissions of meOH (140 μmol m-2) and AA (42 μmol m-2), emissions were reduced in mature (meOH: 69%, AA: 60%) and old (meOH: 83%, AA: 76%) leaves. In contrast, the ratio of AA/meOH emissions increased with leaf development (young: 35%, mature: 43%, old: 82%), mimicking the pattern of O-acetyl/methyl ester ratios of leaf bulk cell walls (young: 35%, mature: 38%, old: 51%), which is driven by an increase in O-acetyl and decrease in methyl ester content with age. The results are consistent with meOH and AA emission sources from cell wall de-esterification, with young expanding tissues producing highly methylated pectin that is progressively demethyl-esterified. We highlight the quantification of AA/meOH emission ratios as a potential tool for rapid phenotype screening of structural carbohydrate esterification patterns.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dewhirst</LastName>
<ForeName>Rebecca A</ForeName>
<Initials>RA</Initials>
<Identifier Source="ORCID">0000-0001-8651-2426</Identifier>
<AffiliationInfo>
<Affiliation>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Afseth</LastName>
<ForeName>Cassandra A</ForeName>
<Initials>CA</Initials>
<AffiliationInfo>
<Affiliation>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Castanha</LastName>
<ForeName>Cristina</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mortimer</LastName>
<ForeName>Jenny C</ForeName>
<Initials>JC</Initials>
<Identifier Source="ORCID">0000-0001-6624-636X</Identifier>
<AffiliationInfo>
<Affiliation>Joint BioEnergy Institute, Emeryville, CA, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Environmental Genomics and Systems Biology, Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jardine</LastName>
<ForeName>Kolby J</ForeName>
<Initials>KJ</Initials>
<Identifier Source="ORCID">0000-0001-8491-9310</Identifier>
<AffiliationInfo>
<Affiliation>Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>89NA02M4RX</RegistryNumber>
<NameOfSubstance UI="D010368">Pectins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.1.-</RegistryNumber>
<NameOfSubstance UI="D002265">Carboxylic Ester Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Q40Q9N063P</RegistryNumber>
<NameOfSubstance UI="D019342">Acetic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Y4S76JWI15</RegistryNumber>
<NameOfSubstance UI="D000432">Methanol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019342" MajorTopicYN="N">Acetic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000107" MajorTopicYN="N">Acetylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001272" MajorTopicYN="N">Atmosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002265" MajorTopicYN="N">Carboxylic Ester Hydrolases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004951" MajorTopicYN="N">Esterification</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000432" MajorTopicYN="N">Methanol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008745" MajorTopicYN="N">Methylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010368" MajorTopicYN="N">Pectins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32433654</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0227591</ArticleId>
<ArticleId IdType="pii">PONE-D-19-34824</ArticleId>
<ArticleId IdType="pmc">PMC7239448</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:263-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Jun 29;25(13):1746-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26073136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2012 Oct;22(7):1865-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23210305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Aug;79(3):492-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Aug;108(4):1359-1368</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2012 Jun;249 Suppl 2:S169-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22215232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2011 Aug;52(8):1289-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21673009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):384-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20427466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jun;46(6):948-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16805729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2001 Jul;57(6):929-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11423142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Nov 09;9:1623</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30473703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(4):e1002640</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2017 Sep 23;18(10):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28946627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Oct;16(10):945-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14558696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):483-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20921169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Dec;81(23):8108-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26386051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Jan 31;3:12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2012 Apr;109(4):1083-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22095526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Sep;2(5):851-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2012 Nov 1;169(16):1623-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22717136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jan;24(1):50-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22247250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20852069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2018 Oct;60(10):910-923</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29727062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Mar 19;519(7543):344-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25788097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Dec;229(1):15-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18820945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(7):1783-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17374874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Jul;7(7):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7640530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Nov 7;26(21):2899-2906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27720618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Feb 10;311(5762):812-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2017 Mar 03;3:17024</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28260793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Jun;12(6):267-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17499007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2003 Dec;103(12):4941-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14664637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Sep 21;19(10):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30248977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):616-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2016 Sep;26(9):950-960</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26945038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Jan 11;295(5553):275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11789536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Oct 25;21(20):1720-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21982593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Mar 18;5:101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24672536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2017 Jan;130(1):157-165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27885502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jan 08;11(1):e0146460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26745802</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Dewhirst, Rebecca A" sort="Dewhirst, Rebecca A" uniqKey="Dewhirst R" first="Rebecca A" last="Dewhirst">Rebecca A. Dewhirst</name>
</region>
<name sortKey="Afseth, Cassandra A" sort="Afseth, Cassandra A" uniqKey="Afseth C" first="Cassandra A" last="Afseth">Cassandra A. Afseth</name>
<name sortKey="Castanha, Cristina" sort="Castanha, Cristina" uniqKey="Castanha C" first="Cristina" last="Castanha">Cristina Castanha</name>
<name sortKey="Jardine, Kolby J" sort="Jardine, Kolby J" uniqKey="Jardine K" first="Kolby J" last="Jardine">Kolby J. Jardine</name>
<name sortKey="Mortimer, Jenny C" sort="Mortimer, Jenny C" uniqKey="Mortimer J" first="Jenny C" last="Mortimer">Jenny C. Mortimer</name>
<name sortKey="Mortimer, Jenny C" sort="Mortimer, Jenny C" uniqKey="Mortimer J" first="Jenny C" last="Mortimer">Jenny C. Mortimer</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000526 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000526 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32433654
   |texte=   Cell wall O-acetyl and methyl esterification patterns of leaves reflected in atmospheric emission signatures of acetic acid and methanol.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32433654" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020